DOI
https://doi.org/10.25772/5CWD-D980
Defense Date
2018
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Integrative Life Sciences
First Advisor
William B. Eggleston, Jr.
Second Advisor
Jenifer Stewart
Third Advisor
Fernando Tenjo
Fourth Advisor
Shirley Taylor
Fifth Advisor
Rita Shiang
Abstract
Epigenetics is the study of heritable changes in phenotypes that are not the result of changes in DNA sequence. Examples of epigenetic affecters include methylation changes, chromatin modifications, transcription factors, and RNA-based changes. The molecular mechanisms behind epigenetic changes are not fully understood. Canalization is the buffering of gene expression against environmental changes over time, while habituation is semi-stable expression change over time due to selection. This work characterized the molecular changes associated with the kernel color changes of the R-sc:86-17pale allele at the maize red color1 (r1) locus to determine if the changes are epigenetic in nature. The research; 1) quantified the color differences between the progenitor and habituated sublines; 2) Determined that there are not sequence differences between the progenitor and habituated sublines at the 3` end of the Sc||nc1 gene that could account for changes in seed color; 3) and examined the cytosine methylation patterns at the 3` end of the Sc||nc1 gene of the habituated sublines and the progenitor to determine whether there are methylation differences that correspond with the kernel color changes. Quantification of the kernel colors of the R-sc:86-17pale selection sublines showed that there was a statistically significant difference in kernel color. The identical sequence of the R-sc:86 line and the R-sc:86-17pale Lightest and R-sc:86-17pale Darkest sublines at the 3` end of the Sc||nc1 gene is evidence that the kernel color change is not driven by differences in sequence within the r1 gene. The methylation data suggests that some methylation differences in the R-sc:86-17pale Lightest and R-sc:86-17pale Darkest sublines are present, and suggests that the molecular basis of the kernel color is epigenetic in nature.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
12-7-2018