DOI

https://doi.org/10.25772/PYCD-PD58

Author ORCID Identifier

https://orcid.org/0000-0001-9691-2343

Defense Date

2018

Document Type

Thesis

Degree Name

Master of Science

Department

Chemistry

First Advisor

Mohamed S. El-Shall

Abstract

Graphitic carbon nitride (g-C3N4) heterojunction composites with the semiconducting metal oxides, CeO2, ZnO and TiO2 are prepared in situ by co-calcination of the precursor materials or by a solvothermal method. The structural, morphological and the optical properties of the prepared materials are studied using various microscopy and spectroscopy techniques. The synthesized composite materials, CeO2/g-C3N4, ZnO/g-C3N4 and TiO2/g-C3N4 are more efficient in the photocatalytic degradation of the water pollutants indigo carmine (IC) and atrazine than the pure metal oxide, g-C3N4, or their physical mixtures. The CeO2/g-C3N4 and ZnO/g-C3N4 composites also exhibit improved degradation efficiencies of atrazine as compared to the individual metal oxide or g-C3N4 materials. The improved photocatalytic activity of the composites are attributed to the effective electron-hole charge separation within composite heterojunction, resulting from the well matched energy levels of the metal oxide and g-C3N4. This strategy could be helpful for the synthesis of other metal oxide and g-C3N4 composites for photocatalytic applications.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

12-14-2018

Share

COinS