DOI
https://doi.org/10.25772/JTZJ-G743
Author ORCID Identifier
0000-0002-2559-1316
Defense Date
2019
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Biostatistics
First Advisor
Nitai D. Mukhopadhyay
Abstract
In longitudinal studies, outcomes are measured repeatedly over time, but in reality clinical studies are full of missing data points of monotone and non-monotone nature. Often this missingness is related to the unobserved data so that it is non-ignorable. In such context, pattern-mixture model (PMM) is one popular tool to analyze the joint distribution of outcome and missingness patterns. Then the unobserved outcomes are imputed using the distribution of observed outcomes, conditioned on missing patterns. However, the existing methods suffer from model identification issues if data is sparse in specific missing patterns, which is very likely to happen with a small sample size or a large number of repetitions. We extend the existing methods using latent class analysis (LCA) and a shared-parameter PMM. The LCA groups patterns of missingness with similar features and the shared-parameter PMM allows a subset of parameters to be different among latent classes when fitting a model, thus restoring model identifiability. A novel imputation method is also developed using the distribution of observed data conditioned on latent classes. We develop this model for continuous response data and extend it to handle ordinal rating scale data. Our model performs better than existing methods for data with small sample size. The method is applied to two datasets from a phase II clinical trial that studies the quality of life for patients with prostate cancer receiving radiation therapy, and another to study the relationship between the perceived neighborhood condition in adolescence and the drinking habit in adulthood.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
4-25-2019