DOI

https://doi.org/10.25772/EJRG-S139

Defense Date

2023

Document Type

Thesis

Degree Name

Master of Science

Department

Electrical & Computer Engineering

First Advisor

Patrick Martin, Ph.D.

Abstract

While traditional manufacturing production cells consist of a fixed base robot repetitively performing tasks, the Industry 5.0 flexible manufacturing cell (FMC) aims to bring Autonomous Industrial Mobile Manipulators (AIMMs) to the factory floor. Composed of a wheeled base and a robot arm, these collaborative robots (cobots) operate alongside people while autonomously performing tasks at different workstations. AIMMs have been tested in real production systems, but the development of the control algorithms necessary for automating a robot that is a combination of two cobots remains an open challenge before the large scale adoption of this technology occurs in industry. Currently popular docking based methods require a mount point for the docking station and considerable time for the robot to locate and park. These limitations necessitate the consideration and implementation of more modern robot control and path planning techniques. This work proposes and implements a simulation testbed that uses a contemporary whole-body control, OCS2, to perform more flexible pick-and-place tasks. Within this testbed, an Industry 5.0 based pick-and-place framework is deployed, fine-tuned and tested. This system supports the one-shot lead-through based assignment of a prepick position by an operator, thus enabling the cobot to drive to this position and successfully pick up the part agnostic of base orientation and/or position. The proposed system allows robot path planning experimentation and assessment against a variety of cost and constraint values, and is capable of being modified to support various vision based part locating algorithms.

Rights

© 2023 Richard Ethan Hollingsworth

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

4-23-2023

Share

COinS