DOI
https://doi.org/10.25772/7Q3G-FT46
Defense Date
2023
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Systems Modeling and Analysis
First Advisor
Daniel Cranston
Second Advisor
Jessica McDonald
Third Advisor
Neal Bushaw
Fourth Advisor
Craig Larson
Fifth Advisor
J. Paul Brooks
Abstract
The Borodin–Kostochka Conjecture states that for a graph G, if ∆(G) ≥ 9 and ω(G) ≤ ∆(G) − 1, then χ(G) ≤ ∆(G) − 1. We prove the Borodin–Kostochka Conjecture for (P5, gem)-free graphs, i.e., graphs with no induced P5 and no induced K1 ∨P4.
For a graph G and t, k ∈ Z+ at-tone k-coloring of G is a function f : V (G) → [k] such that |f(v) ∩f (w)| < d(v,w) for all distinct v, w ∈ V(G). The t-tone chromatic number of G, denoted τt(G), is the minimum k such that G is t-tone k-colorable. For small values of t, we prove sharp or nearly sharp upper bounds on the t-tone chromatic number of various classes of sparse graphs. In particular, we determine τ2(G) exactly when mad(G) < 12/5 and also determine τ2(G), up to a small additive constant, when G is outerplanar. Finally, we determine τt(Cn) exactly when t ∈ {3, 4, 5}.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
8-8-2023