DOI
https://doi.org/10.25772/AMWM-WK78
Defense Date
2010
Document Type
Thesis
Degree Name
Master of Science
Department
Physics
First Advisor
Alison Baski
Abstract
Gallium nitride is an important III-V semiconductor which is used in many optoelectronic and high-frequency devices. The nature of the GaN surface and its electrical characteristics can impact the performance of such devices. In this study, several GaN surfaces are locally charged using an atomic force microscope, and then subsequently studied by measuring the surface potential with scanning Kelvin probe microscopy (SKPM). The charging and discharging behavior of the surface appears to be strongly influenced by surface preparation and the presence of a surface oxide layer. If a substantial oxide layer exists, then both positive and negative charging is possible on n-type and p-type samples. Surface treatments and photoemission spectroscopy (XPS) data confirm the presence and influence of the oxide layer on surface charging behavior. In the case of forward-bias charging, a small change in surface contact potential (0.1 – 0.3 eV) is observed that is primarily due to a small voltage drop across the surface oxide. Reverse-bias charging produces a substantially larger change in surface potential (~1 – 3 eV) that must be explained by a large increase in surface band bending. Temperature-dependent SKPM measurements also indicate that the decay behavior of deposited surface charge in dark involves a thermionic mechanism.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
May 2010