Document Type
Article
Original Publication Date
2015
Journal/Book/Conference Title
PLoS ONE
Volume
10
Issue
3
DOI of Original Publication
10.1371/journal.pone.0120157
Date of Submission
November 2015
Abstract
Inflammation and altered immunity are recognized components of severe pulmonary arterial hypertension in human patients and in animal models of PAH. While eicosanoid metabolites of cyclooxygenase and lipoxygenase pathways have been identified in the lungs from pulmonary hypertensive animals their role in the pathogenesis of severe angioobliterative PAH has not been examined. Here we investigated whether a cyclooxygenase-2 (COX-2) inhibitor or diethylcarbamazine (DEC), that is known for its 5-lipoxygenase inhibiting and antioxidant actions, modify the development of PAH in the Sugen 5416/hypoxia (SuHx) rat model. The COX-2 inhibitor SC-58125 had little effect on the right ventricular pressure and did not prevent the development of pulmonary angioobliteration. In contrast, DEC blunted the muscularization of pulmonary arterioles and reduced the number of fully obliterated lung vessels. DEC treatment of SuHx rats, after the lung vascular disease had been established, reduced the degree of PAH, the number of obliterated arterioles and the degree of perivascular inflammation. We conclude that the non-specific anti-inflammatory drug DEC affects developing PAH and is partially effective once angioobliterative PAH has been established.
Rights
Al-Husseini, A., Wijesinghe, D. S., & Farkas, L., et al. Increased Eicosanoid Levels in the Sugen/Chronic Hypoxia Model of Severe Pulmonary Hypertension. PLoS ONE, 10, e0120157. Copyright This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Is Part Of
VCU Internal Medicine Publications
Comments
Originally published at http://dx.doi.org/10.1371/journal.pone.0120157