Document Type

Article

Original Publication Date

2015

Journal/Book/Conference Title

BioMed Central

Volume

15

DOI of Original Publication

10.1186/s12885-015-1149-5

Comments

Originally published at http://dx.doi.org/10.1186/s12885-015-1149-5

Date of Submission

December 2015

Abstract

Background

High levels of thymidine kinase 1 (TK1) and thymidine phosphorylase (TYMP) are key molecular targets by thymidine therapeutics in cancer treatment. The dual roles of TYMP as a tumor growth factor and a key activation enzyme of anticancer metabolites resulted in a mixed outcome in cancer patients. In this study, we investigated the roles of TK1 and TYMP on a thymidine quinoxaline conjugate to evaluate an alternative to circumvent the contradictive role of TYMP.

Methods

TK1 and TYMP levels in multiple liver cell lines were assessed along with the cytotoxicity of the thymidine conjugate. Cellular accumulation of the thymidine conjugate was determined with organelle-specific dyes. The impacts of TK1 and TYMP were evaluated with siRNA/shRNA suppression and pseudoviral overexpression. Immunohistochemical analysis was performed on both normal and tumor tissues. In vivo study was carried out with a subcutaneous liver tumor model.

Results

We found that the thymidine conjugate had varied activities in liver cancer cells with different levels of TK1 and TYMP. The conjugate mainly accumulated at endothelial reticulum and was consistent with cytosolic pathways. TK1 was responsible for the cytotoxicity yet high levels of TYMP counteracted such activities. Levels of TYMP and TK1 in the liver tumor tissues were significantly higher than those of normal liver tissues. Induced TK1 overexpression decreased the selectivity of dT-QX due to the concurring cytotoxicity in normal cells. In contrast, shRNA suppression of TYMP significantly enhanced the selective of the conjugate in vitro and reduced the tumor growth in vivo.

Conclusions

TK1 was responsible for anticancer activity of dT-QX while levels of TYMP counteracted such an activity. The counteraction by TYMP could be overcome with RNA silencing to significantly enhance the dT-QX selectivity in cancer cells.

Rights

© 2015 Wei et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Is Part Of

VCU Medicinal Chemistry Publications

Share

COinS