Document Type

Article

Original Publication Date

2011

Journal/Book/Conference Title

PLOS ONE

Volume

6

DOI

10.1371/journal.pone.0023518

Comments

Originally Published at http://dx.doi.org/10.1371/journal.pone.0023518

Date of Submission

November 2014

Abstract

It has been known for decades that some insect-infecting trypanosomatids can survive in culture without heme supplementation while others cannot, and that this capability is associated with the presence of a betaproteobacterial endosymbiont in the flagellate's cytoplasm. However, the specific mechanisms involved in this process remained obscure. In this work, we sequence and phylogenetically analyze the heme pathway genes from the symbionts and from their hosts, as well as from a number of heme synthesis-deficient Kinetoplastida. Our results show that the enzymes responsible for synthesis of heme are encoded on the symbiont genomes and produced in close cooperation with the flagellate host. Our evidence suggests that this synergistic relationship is the end result of a history of extensive gene loss and multiple lateral gene transfer events in different branches of the phylogeny of the Trypanosomatidae.

Rights

© 2011 Alves et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Is Part Of

VCU Microbiology and Immunology Publications

134432.zip (11384 kB)
Supporting Information

Share

COinS