Document Type
Article
Original Publication Date
2018
Journal/Book/Conference Title
PLoS ONE
Volume
13
Issue
10:e0206606
First Page
1
Last Page
23
DOI of Original Publication
10.1371/journal.pone.0206606
Date of Submission
October 2019
Abstract
Modification of the host lipidome via secreted enzymes is an integral, but often overlooked aspect of bacterial pathogenesis. In the current era of prevalent antibiotic resistance, knowledge regarding critical host pathogen lipid interactions has the potential for use in developing novel antibacterial agents. While most studies to date on this matter have focused on specific lipids, or select lipid classes, this provides an incomplete picture. Modern methods of untargeted lipidomics have the capacity to overcome these gaps in knowledge and provide a comprehensive understanding of the role of lipid metabolism in the pathogenesis of infections. In an attempt to determine the role of lipid modifying enzymes produced by staphylococci, we exposed bovine heart lipids, a standardized model for the mammalian lipidome, to spent medium from staphylococcal cultures, and analyzed lipid molecular changes by MS/MSALLshotgun lipidomics. We elucidate distinct effects of different staphylococcal isolates, including 4 clinical isolates of the pathogenic species Staphylococcus aureus, a clinical isolate of the normally commensal species S. epidermidis, and the non-pathogenic species S. carnosus. Two highly virulent strains of S. aureus had a more profound effect on mammalian lipids and modified more lipid classes than the other staphylococcal strains. Our studies demonstrate the utility of the applied untargeted lipidomics methodology to profile lipid changes induced by different bacterial secretomes. Finally, we demonstrate the promise of this lipidomics approach in assessing the specificity of bacterial enzymes for mammalian lipid classes. Our data suggests that there may be a correlation between the bacterial expression of lipid-modifying enzymes and virulence, and could facilitate the guided discovery of lipid pathways required for bacterial infections caused by S. aureus and thereby provide insights into the generation of novel antibacterial agents.
Rights
© 2018 Gajenthra Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Is Part Of
VCU Pharmacotherapy and Outcomes Science Publications
Comments
Originally published at https://doi.org/10.1371/journal.pone.0206606
Funded in part by the VCU Libraries Open Access Publishing Fund.