Document Type

Article

Original Publication Date

2006

Journal/Book/Conference Title

The Biophysical Journal

Volume

91

Issue

6

First Page

2082

Last Page

2096

DOI of Original Publication

10.1529/biophysj.106.087296

Comments

Originally published at http://dx.doi.org/10.1529/biophysj.106.087296

Under an Elsevier user license

Date of Submission

February 2015

Abstract

Abstract

Pancreatic islets of Langerhans display complex intracellular calcium changes in response to glucose that include fast (seconds), slow (∼5 min), and mixed fast/slow oscillations; the slow and mixed oscillations are likely responsible for the pulses of plasma insulin observed in vivo. To better understand the mechanisms underlying these diverse patterns, we systematically analyzed the effects of glucose on period, amplitude, and plateau fraction (the fraction of time spent in the active phase) of the various regimes of calcium oscillations. We found that in both fast and slow islets, increasing glucose had limited effects on amplitude and period, but increased plateau fraction. In some islets, however, glucose caused a major shift in the amplitude and period of oscillations, which we attribute to a conversion between ionic and glycolytic modes (i.e., regime change). Raising glucose increased the plateau fraction equally in fast, slow, and regime-changing islets. A mathematical model of the pancreatic islet consisting of an ionic subsystem interacting with a slower metabolic oscillatory subsystem can account for these complex islet calcium oscillations by modifying the relative contributions of oscillatory metabolism and oscillatory ionic mechanisms to electrical activity, with coupling occurring via KATP channels.

Rights

From The Biophysical Journal, Nunemaker, C.S., Bertram, R., Sherman, A., et al., Glucose Modulates [Ca2+]i Oscillations in Pancreatic Islets via Ionic and Glycolytic Mechanisms, Vol. 91, Page 2082. Copyright © 2006 The Biophysical Society. Published by Elsevier Inc. Reprinted with permission.

Is Part Of

VCU Pharmacology and Toxicology Publications

Share

COinS