Document Type

Article

Original Publication Date

2019

Journal/Book/Conference Title

Scientific Reports

Volume

9:14358

First Page

1

Last Page

9

DOI of Original Publication

10.1038/s41598-019-50797-7

Comments

Originally published at https://doi.org/10.1038/s41598-019-50797-7.

Funded in part by the VCU Libraries Open Access Publishing Fund.

Date of Submission

December 2019

Abstract

The spine flexibility creates one of the most significant challenges to proper positioning in radiation therapy of head and neck cancers. Even though existing immobilization techniques can reduce the positioning uncertainty, residual errors (2–3 mm along the cervical spine) cannot be mitigated by single translation-based approaches. Here, we introduce a fully radiotherapy-compatible electro-mechanical robotic system, capable of positioning a patient’s head with submillimeter accuracy in clinically acceptable spatial constraints. Key mechanical components, designed by finite element analysis, are fabricated with 3D printing and a cyclic loading test of the printed materials captures a great mechanical robustness. Measured attenuation of most printed components is lower than analytic estimations and radiographic imaging shows no visible artifacts, implying full radio-compatibility. The new system evaluates the positioning accuracy with an anthropomorphic skeletal phantom and optical tracking system, which shows a minimal residual error (0.7 ± 0.3 mm). This device also offers an accurate assessment of the post correction error of aligning individual regions when the head and body are individually positioned. Collectively, the radiotherapy-compatible robotic system enables multi-landmark setup to align the head and body independently and accurately for radiation treatment, which will significantly reduce the need for large margins in the lower neck.

Rights

© The Author(s) 2019. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Is Part Of

VCU Radiation Oncology Publications

Share

COinS