Document Type
Article
Original Publication Date
1998
Journal/Book/Conference Title
Applied Physics Letters
Volume
73
Issue
23
DOI of Original Publication
10.1063/1.122786
Date of Submission
April 2015
Abstract
Piezoelectric effects on the optical properties of GaN/AlGaN multiple quantum wells(MQWs) have been investigated by picosecond time-resolvedphotoluminescence(PL)measurements. For MQWs with well thicknesses 30 and 40 Å, the excitonic transition peak positions at 10 K in continuous wave (cw) spectra are redshifted with respect to the GaN epilayer by 13 and 45 meV, respectively. The time-resolvedPL spectra of the 30 and 40 Å well MQWs reveal that the excitonic transition is in fact blueshifted at early delay times due to quantum confinement of carriers. The spectral peak position shifts toward lower energies as the delay time increases and becomes redshifted at longer delay times. We have demonstrated that the results described above are due to the presence of the piezoelectric field in the GaN wells of GaN/AlGaN MQWs subject to elastic strain together with screening of the photoexcited carriers. By comparing experimental and calculation results, we conclude that the piezoelectric field strength in GaN/Al0.15Ga0.85NMQWs has a lower limit value of about 560 kV/cm. The electron and hole wave function distributions have also been obtained. The implication of our findings on the practical applications of GaN based optoelectronic devices is also discussed.
Rights
Kim, H.S., Lin, K.Y., Jiang, H.X., et al. Piezoelectric effects on the optical properties of GaN/AlxGa1−xN multiple quantum wells. Applied Physics Letters, 73, 3426 (1998). Copyright © 1998 AIP Publishing LLC.
Is Part Of
VCU Electrical and Computer Engineering Publications
Comments
Originally published at http://dx.doi.org/10.1063/1.122786