Document Type
Article
Original Publication Date
2013
Journal/Book/Conference Title
Applied Physics Letters
Volume
103
Issue
17
DOI of Original Publication
10.1063/1.4826688
Date of Submission
March 2015
Abstract
The primary impediment to continued downscaling of traditional charge-based electronic devices in accordance with Moore's law is the excessive energy dissipation that takes place in the device during switching of bits. One very promising solution is to utilize multiferroicheterostructures, comprised of a single-domain magnetostrictive nanomagnet strain-coupled to a piezoelectric layer, in which the magnetization can be switched between its two stable states while dissipating minuscule amount of energy. However, no efficient and viable means of computing is proposed so far. Here we show that such single multiferroic composites can act as universal logic gates for computing purposes, which we demonstrate by solving the stochastic Landau-Lifshitz-Gilbert equation of magnetization dynamics in the presence of room-temperature thermal fluctuations. The proposed concept can overwhelmingly simplify the design of large-scale circuits and portend a highly dense yet an ultra-low-energy computing paradigm for our future information processing systems.
Rights
Roy, K. Ultra-low-energy non-volatile straintronic computing using single multiferroic composites. Applied Physics Letters, 103, 173110 (2013). Copyright © 2013 AIP Publishing LLC.
Is Part Of
VCU Electrical and Computer Engineering Publications
Comments
Originally published at http://dx.doi.org/10.1063/1.4826688