DOI
https://doi.org/10.25772/3642-ZN62
Defense Date
2012
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Engineering
First Advisor
Xubin He
Abstract
RAID-6 is widely used to tolerate concurrent failures of any two disks to provide a higher level of reliability with the support of erasure codes. Among many implementations, one class of codes called Maximum Distance Separable (MDS) codes aims to offer data protection against disk failures with optimal storage efficiency. Typical MDS codes contain horizontal and vertical codes. However, because of the limitation of horizontal parity or diagonal/anti-diagonal parities used in MDS codes, existing RAID-6 systems suffer several important problems on performance and scalability, such as low write performance, unbalanced I/O, and high migration cost in the scaling process. To address these problems, in this dissertation, we design techniques for high performance and scalable RAID-6 systems. It includes high performance and load balancing erasure codes (H-Code and HDP Code), and Stripe-based Data Migration (SDM) scheme. We also propose a flexible MDS Scaling Framework (MDS-Frame), which can integrate H-Code, HDP Code and SDM scheme together. Detailed evaluation results are also given in this dissertation.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
November 2012