DOI
https://doi.org/10.25772/27KT-3875
Defense Date
2017
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Pharmaceutical Sciences
First Advisor
Douglas H Sweet
Abstract
Organic cation transporters (OCTs) play a pivotal role in the absorption, tissue distribution, and excretion of a diverse array of substances, and currently the nature of the biochemical interactions between substrate and OCTs are unknown. Therefore, identifying which amino acid residues are critical for OCT-substrate interactions is of central importance to understanding and predicting interactions between drugs and OCTs. A three-dimensional (3-D) homology model of human OCT3 was generated using the crystal structure of a high affinity phosphate transporter from Piriformospora indica (PiPT) as template, and putative binding pocket for the prototypical hOCT3 ligand 1-methyl-4-phenylpyridinium (MPP+) was identified through docking studies. Five residues, Phe36, Val40, Trp358, Glu451 and Asp478, were identified as potentially mediating hOCT3-MPP+ interactions, and confirmed through in vitro studies. Additionally, 3-D homology modeling of the functional hOCT3 mutant Val40Leu, and all non-functional hOCT3 mutants, indicated changes in binding pocket architecture consistent with weakening of ligand-transporter interactions. Docking of structurally divergent hOCT3 substrates indicated binding interactions in the same general region as that identified for MPP+, albeit with mostly unique residues. Interspecies differences were explored by generating 3-D homology models for rat and murine Oct3. Results from docking studies using compounds exhibiting vastly different binding affinities (Km or IC50) towards the OCT3/Oct3 orthologs were consistent with varying strength in ligand-transporter binding pocket interactions. Finally, a series of novel compounds exhibiting anti-depressant-like activity was screened for OCT interaction in vitro, and demonstrated significant inhibitory effects on OCTs for many of the compounds.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
5-10-2017