DOI
https://doi.org/10.25772/3B6P-W489
Author ORCID Identifier
orcid.org/0000-0003-3121-8013
Defense Date
2017
Document Type
Thesis
Degree Name
Master of Science
Department
Engineering
First Advisor
Stephen Fong
Second Advisor
Nastassja Lewinski
Third Advisor
David Jenson
Abstract
Photoelectrochemical cells have been intensively studied in recent years with regard to using thylakoid and photosynthesis system I/II. BBY membrane is another protein complex that has potential to be utilized to build photoelectrochemical cells. Within the BBY membrane lies the highly active photosynthesis system II complex, which upon light activation, generates electrons transported within the electron transport chain during photosynthesis in green plants. This study presents an approach of immobilizing thylakoid or BBY membrane onto gold nanoparticle modified gold plate or multi-walled carbon nanotube (MWCNT) modified indium tin oxide vi (ITO) coated glass substrate. The results show that BBY membrane has higher activity with a value of 168 ± 12 μmol DCIP/(mg Chl*hr) than the thylakoid, which has an activity of 67 ± 7 μmol DCIP/(mg Chl*hr). Further amperometric tests also show that BBY membrane generates a higher current than the thylakoid. We used gold based materials to build the cell first since gold has high electrical conductivity. However, in order to minimize the construction cost of cells, relatively cheap materials such as ITO coated glass and MWCNT were used instead. The surface morphology of cells was characterized using atomic force microscope (AFM) throughout cell modification. When comparing to the cell with gold material, the cell constructed with ITO and MWCNT generated a higher current density. The highest current density was found as 20.44 ± 1.58 μA/cm2 with a system of ITO/MWCNT/BBY. More, the stability of the system was examined and the result shows a decreasing rate of 0.78 %/hour.
Rights
© Yang Liu
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
8-4-2017