Document Type

Article

Original Publication Date

2016

Journal/Book/Conference Title

Neurotoxicology

Volume

52

First Page

127

Last Page

133

DOI of Original Publication

10.1016/j.neuro.2015.11.014

Comments

Originally published at doi:10.1016/j.neuro.2015.11.014.

Date of Submission

September 2016

Abstract

Approximately 175,000 to 250,000 of the returning veterans from the 1991 Persian Gulf War exhibit chronic multi-symptom illnesses that includes neurologic co-morbidities such as depression, anxiety and cognitive impairments. Amongst a host of causative factors, exposure to low levels of the nerve agent Sarin has been strongly implicated for expression of Gulf War Illness (GWI). Nerve agents similar to pesticides are organophosphate (OP) compounds. There is evidence from civilian population that exposure to OPs such as in agricultural workers and nerve agents such as the survivors and first-responders of the Tokyo subway Sarin gas attack suffer from chronic neurological problems similar to GWI symptoms. Given this unique chemical profile, OPs are ideal to study the effects of nerve agents and develop models of GWI in civilian laboratories. In this study, we used repeated low-dose exposure to OP agent diisopropyl fluorophosphate (DFP) over a 5-day period to approximate the duration and level of Sarin exposure during the Persian Gulf War. We tested the rats at 3-months post DFP exposure. Using a battery of behavioral assays, we observed the presence of symptoms of chronic depression, anxiety and memory problems as characterized by increased immobility time in the Forced Swim Test, anhedonia in the Sucrose Preference Test, anxiety in the Elevated Plus Maze, and spatial memory impairments in the Object Location Test, respectively. Chronic low dose DFP exposure was also associated with hippocampal neuronal damage as characterized by the presence of Fluoro-Jade staining. Given that OP exposure is considered a leading cause of GWI related morbidities, this animal model will be ideally suited to study underlying molecular mechanisms for the expression of GWI neurological symptoms and identify drugs for the effective treatment of GWIs.

Rights

© 2015 Elsevier Inc. All rights reserved. NOTICE: this is the author’s version of a work that was accepted for publication in Neurotoxicology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neurotoxicology Volume 52, January 2016, Pages 127-133, doi:10.1016/j.neuro.2015.11.014.

Is Part Of

VCU Neurology Publications

Included in

Neurology Commons

Share

COinS