Files
Download Full Text (1.1 MB)
Abstract
We are experimenting on designing a voltage-controlled ultra-low-energy Magnetic Tunneling Junction (MTJ) device using a soft single domain magnetostrictive layer (i.e. Galfenol: Fe1-xGax , x = 20 At%) coupled to a piezoelectric layer (i.e. PMN-PT). Special metal pads have been designed using photolithography to generate stress in the PMN-PT layer by applying electric field. The patterns of different shape anisotropic nano-magnets are designed using e-beam lithography and we have successfully fabricate FeGa nanomagnets with only 12 to 13 nanometer thickness by sputter deposition. These nanomagnets have been characterized by magnetic force microscopy for observing their switching capabilities. Several nano-magnets have shown magnetization reversal after applying stress. Magnetic domain pinning, shape irregularity, irregular edges in the pattern, strain gradients across the FeGa etc. are several factors that we are still trying to optimize. The next step will be to deposit a tunneling oxide layer and hard ferromagnetic layer to complete the MTJ. These simple strain controlled MTJs can act as non-volatile NAND and NOR gate depending on the shape anisotropy barrier of the soft ferromagnetic layer (FeGa) and are extremely energy-efficient.
Publication Date
2015
Keywords
Magnetostriction, Multiferroic, Magnetic Tunneling Junction, Galfenol
Disciplines
Electronic Devices and Semiconductor Manufacturing | Nanotechnology Fabrication
Faculty Advisor/Mentor
Dr. Supriyo Bandyopadhyay, Dr. Jayasimha Atulasimha
Is Part Of
VCU Graduate Research Posters
Included in
Electronic Devices and Semiconductor Manufacturing Commons, Nanotechnology Fabrication Commons